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Abstract. A rather direct way of studying a high-density exciton system is outlined to take 
full account of the non-boson behaviour of excitons. Many-exciton systems are shown to be 
always non-ideal and thus they can only be characterised by their total energy and total 
number. The single-exciton energy and distribution function can be understood simply in 
the framework of the mean-field approximation and they both depend upon the exciton 
density. It is shown that our approach could be applied to both Frenkel and Wannier-Mott 
excitons in materials of bulk and low-dimensional structures as well as under the action of 
an external field. 

1. Introduction 

Despite the fact that the concept of excitons was introduced nearly 60 years ago (Frenkel 
1931, Wannier 1937, Mott 1938) their collective properties have been seriously studied 
only for the last two decades since the original paper by Keldysh (1968). 

Nowadays using short-pulse technique one may generate a high electron-hole density 
in a semiconductor. At very high excitation or on a very short time scale the carrier 
distributions turn out to differ radically from the thermal distributions and the theoretical 
tool that seems most adapted to these circumstances is the non-equilibrium Green 
function method first developed by Keldysh (1965) and then widely used, for example, 
by Haug (1985), Henneberger (1986), May (1986), Schafer and Treusch (1986) and 
Glaeske and Schubert (1988). At moderate excitation below the Mott transition the 
electron-hole attractive Coulomb potential is still strong enough to form bound pair 
states called excitons. The temporal evolution of the exciton system is governed by two 
kinds of time. The first kind r,-the transverse or dephase time-characterises the rate 
of exciton-exciton scattering. The second kind r i r t h e  longitudinal or depopulation 
time-characterises the rate of electron-hole recombinations and hence limits the life- 
time of excitons. If til< r,, excitons recombine rather than interact with each other. In 
the reverse limit (~11% r,) they have enough time to acquire quasi-equilibrium dis- 
tributions among themselves and the exciton system can be characterised by a certain 
density n and an effective temperature T .  The latter, of course, must be assumed to be 
as low as kBT < Zb (kB and Zb are the Boltzmann constant and exciton binding energy, 
respectively) to prevent excitons from thermal ionisations. Since in typical semi- 
conductors ttl and t, are of the order of some nanoseconds and picoseconds, respectively, 
one really has, under resonant excitation in the exciton spectral region, an exciton gas 
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which can reach a thermal quasi-equilibrium within a duration t as long as t, < t < zll. 
For such a gas, many-exciton effects play a very important role. They cause many new 
phenomena that are absent at low excitation, e.g. the formation of biexcitons, the 
occurrence of a phase transition or condensations in real or reciprocal spaces, and the 
appearance of multi-stability and instability. 

So far two theoretical descriptions of dense exciton systems in semiconductors have 
been given, namely the pairing theory (Keldysh and Kozlov 1968) and the boson 
formalism (Hanamura 1970, 1974, Steyn-Ross and Gardiner 1983). In spite of their 
success in spectral problems many-exciton systems do not seem to be so well understood, 
especially from the statistical point of view. Kaplan (1976) formulated specific statistics 
of Frenkel excitons which then have been fruitfully utilised for researching the Bose- 
Einstein condensation (Kaplan and Ruvinskii 1976), the excitation-induced change of 
giant polariton dispersions (Avdjugin et af 1983; Nguyen 1988b, 1989a, b) and the density 
and optical bi-stability (Nguyen 1988a) of excitons in molecular media. 

In this paper we would like to extend Kaplan’s results to Wannier-Mott excitons. 
Now, instead of exponent functions in unitary transformations connecting exciton oper- 
ators in coordinate and momentum spaces (Kaplan 1976), we have to handle hydrogen- 
like functions describing the relative electron-hole motion in an exciton. This makes the 
situation quite confused and one hardly expects to obtain final results in a compact form! 
Fortunately, we can show that our results are generalised and they may be used for 
any kinds of exciton provided that their bound functions form a complete and ortho- 
normalised set. Comments on Kaplan’s formulations as well as the advantage of our 
approach in comparison with the pairing theory and the boson representation will be 
given in due course. Everywhere in this paper we work in the h = c = 1 unit system. 

2. Exciton operators and their commutators 

For simplicity, we restrict ourselves to a direct two-band seniconductor with isotropic 
effective masses me and mh and disregard the carrier spin. 

The pairing theory (Keldysh and Kozlov 1968) starts with the following Hamiltonian 
for the electron-hole system: 

where ek (hk)  destroys an electron (a hole) with momentum k and energy Ee(k) (Eh(k)). 
Uq = 4ne2/q2V, where Vis the normalised volume of the sample. At very low excitation 
the electron-hole bound pair eigenvalue E and eigenfunction IX) and H can be found 
from the solution of the equation HIX) = EIX), yielding 

E E Evk = E ,  - 1; + k2/2(me f mh) (2) 

where v specifies the orbital state of the electron-hole relative motion in an exciton, 
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/3 = mh/(me + mh) and 10) is the semiconductor vacuum state. The hydrogen-like 
wavefunctions fV satisfy the ortho-normalisation and completeness conditions 

V 

For operators bVk and b:k referred to as exciton operators the following C0n"tatOrS 
hold: 

where a = 1 - p. Note that statements such as 'bVk destroys an exciton in the state U 
with energy Euk' are true only in the pair vanishing limit. Later we shall clarify the 
physical meaning of exciton operators in the case of dense exciton systems. 

As to the boson formalism, Hanamura (1970) uses a transformation of Usui (1960) 
to map the fermion space onto a hypothetical boson space in which excitons behave as 
ideal bosons and their mutual interactions should be described in an effective manner. 
However, the transformation due to Usui does not ensure a one-to-one correspondence 
between fermion and boson states and the transformed Hamiltonian is non-Hermitian. 
To overcome these inconsistencies, Hanamura (1974) has to resort to an arranging 
procedure which in our opinion is quite complicated and not natural. To avoid the above- 
mentioned difficulty, Steyn-Ross and Gardiner (1983) apply a modified version of the 
transformation by Marumori et a1 (1964) and have changed H to HB expressed through 
the ideal boson operators cVk and c:k as follows: 

HB = E,,kC:kC,k + 4 W V u ~ V ~ ~ u ~ ~ ~ ( k ~ ~ ) C ~ k + q C ~ ~ p - q C V ~ ~ c u ~ ~ ~ k  (8) 
uk " V!;qu I ,  I 

where the effective boson-boson coupling functions W comprise terms of two kinds: 
one represents the dynamic interaction among bosons and the other comes from the 
dynamic-kinematic interboson interaction which partly reflects the non-boson character 
of excitons but, as one can see, the boson formalism is unable to cover all properties of 
the very complicated system of real excitons, i.e. it omits the so-called purely kinematic 
interaction (see, e.g., Lalovic et a1 1969). To take full account of the non-boson nature, 
we formally follow the procedure performed in the paper by Steyn-Ross and Gardiner 
(1983) but we replace in it the boson operators c,k and c:k by the exciton operators bVk 
and b:k. Further, to highlight the role of the purely kinematic interaction, we write the 
transformed Hamiltonian labelled A, neglecting the interaction of dynamic and 
dynamic-kinematic kinds: 

k = 2 Eukb:kbVk. 
uk 

(9) 

Since bVk and b zk are not bosonic, let us conventionally call our transformation procedure 
excitonisation and not bosonisation. The commutation relations (6) and (7) are not 
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closed because they involve simultaneously both exciton and electron (hole) operators. 
Following Kaplan (1976) and owing to the reverse-t0-(3) relations 

e+h+ 4 P  = ~ - 1 ' 2  z f f ~ * ( a p  - /3q)b:p+, (10) 
U 

we construct the trilinear commutators for bvk and b:k such as 

[ [buk ,  b:,k,], b , f ~ v ]  = 2 A ~ k Y ~ : ' " ~ - k , + k " b y , , , k - k , + k "  (11) 

[ [ b Y k ,  b: ,k , ] ,  b ; , ]  = - A$,"i:fk8-k.k"b+,,r U k + k ' - k  (12) 

Y'" 

U"' 

AII,'$i:',' = V-* 2 [f: ( p  - p k ) f y t ( p  - /3k')f$(p - k' + ak")f,,,,(p - k + ak"') 
P 

+fu,,, ( p  - /3k"')fy* ( p  - pk)f,, ,  ( p  - k + ak')ff(p - k"' + dC")]. (13) 
Equations (6) and (11)-(13) form a closed set of exact commutation relations for non- 
boson exciton operators which resemble those for parafermions (Kalnay 1975, Kalnay 
and MacContrina 1976). Owing to the hydrogen-like functions, equations (11)-( 13) 
look much more cumbrous than those for Frenkel excitons (Kaplan 1976). 

3. Exciton total number operator 

At first view, B represents non-interacting excitons. Yet, it is so only ifbuk and bZk were 
bosonic. The deviation of [buk, b:8k8]  from Kronecker symbols and the omission of them 
in [ [buk ,b : ,k , ] ,  bv,,K'], [ [buk,  buf'k'], b$v] tell us that excitons cannot be truly free as 
elementary particles in the quantum field theory (see, e.g., Akhiezer and Berestexkii 
1969, Nguyen 1984). We shall prove this later but even now we make use of it to be 
aware that there exist no stationary states containing a certain number of excitons with 
given values of I, and k ;  so the many-exciton system should be characterised by its total 
number, whose operator is estimated differently from that of fermions and bosons. 
Define the following operator: 

where 8 is the number of unit cells which, as is well known, is equal to the number of 
states & 1 in a band inside the first Brillouin zone. Using (4) and (5) we can also check 
that the number of states and the number of orbitals are equal, i.e. (see appendix) 

'32=c.1 = E l .  
k U 

With the aid of (4)-(7) and (11)-(15) we can derive the following relations valid for any 
v ,  k and constant y :  

A = 4 ]c (e,+ep + h;hp)  (16) 

[A, y b u k l  = - ybuk [A, Yb:k] = yb:k. (17) 

P 

Denote by IN) the eigenfunction of A corresponding to the eigen-value N :  
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The second-quantisation method presented, for example, in a book by Nguyen (1984), 
the use of (16) and (17) and the fact that e and h are fermion operators given by 

qi+1 Yi+1 W+1 gt + 1 

epi  = n h,, = n e i i =  n hll  = 0 
i =  1 i = l  i =  1 i =  1 

help us to prove that 

N = 0 , 1 , 2  ) . . . )  % (20) 

bvk 10) = 0 (21) 

bvk IN) = u;;k/N - 1) (22) 

b ; f , l N j  = IN + 1) (23) 

bzk/%) = 0 (24) 

where uhk and are coefficients to be determined. Equations (20)-(24) together 
with equations (11)-(13) let us conclude that Ais  the exciton total number operator and 
the excitons could be treated as quasi-parafermions obeying rank-9 parfermion-like 
statistics. The indices v and k here play only a formal role and will be dropped in what 
follows in this section. In the next section we shall work in the mean-field approximation 
(MFA) within which the physical nature of bvk and b:k will be cleared up and then the 
indices v and k become necessary and meaningful. If bvk and bzk were bosonic or 
fermionic, the determination of uN and uN+l is a rather simple task (see, e.g., Nguyen 
1984). Since it is not so, let us begin from (18) which gives 

N = (NIAIN). (25) 

Putting (14) into (25) and then expanding, we obtain with the use of (15), (22) and (23) 
a very helpful relation valid for any N:  

2N = % ( u N u N  - U N + ]  u N + ~  + 1). (26) 

Now writing (26) as a system of equations for various N ,  i.e. 

2 x 0 = %(uouo - u1u1 + 1) 

2 x 1 = % ( u l u l  - u2u2 + 1) 

(27) 

(28) 

and summing separately two sides of equations (27)-(29) with attention to the can- 
cellation of terms in two sequential rows, we get 

(30) 2[0 + 1 + 2 + * . * + ( N  - l ) ]  = %(uouo - U N U N  + N ) .  

Taking into account uo = 0 (see (21) and (22)) and u N  = U $  (see (22) and (23)) we 
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immediately from (30) determine uN and uN to the accuracy of an unimportant phase 
factor: 

U N  = U N  = {N[1 - ( N  - 1)/%]}1'2. 

blN) = {N[1 - ( N  - l)/YI]}1/21N - 1) (32) 

b+IN)=[(N+1)(1-N/,32)]'/2JN+ 1). (33) 

(31) 

Then equations (22) and (23) become 

The functions IN), on the one hand, may be constructed by acting b+ on 10) Ntimes and, 
on the other hand, must be normalised to unity. Therefore, we can introduce the 
normalisation coefficient CN as 

Using (23), (31) and (33) we have 

. . . = C N ~ + U I U ~ .  . . u N - ~ / N - I ) = C N U ~ U Z . .  . u N - ~ u N I N ) .  (35) - - 

The normalisation condition (N/N) = 1 then gives 

It is worth noting that the results of this section coincide with those of Kaplan (1976) in 
spite of the different methods of derivation and the fact that Kaplan considers Frenkel 
excitons while we are concerned with Wannier-Mott excitons. Because of the conditions 
(4) and (5) the hydrogen-like functions disappear totally in our calculations owing to 
summing over v and k in (14). This interesting remark means that our results remain 
unchanged independent of the kind of exciton that we have to deal with. They may be 
excitons in an electric or magnetic field, in bulk or low-dimensional structure materials, 
etc., because, as a principle, their wavefunctions always satisfy conditions such as (4) 
and (5). 

4. Density-dependent single-exciton energy 

In this section we try to derive the expression for the single-exciton energy within an 
appropriate approximation called the MFA. In doing so, the operators bvk and b:k will 
gain their full physical meaning. From (9) and (14) it follows that 

[fi, lq = 0. (37) 

Equation (37) reveals that the total energy EN of the system is as important as its total 
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number N .  Consequently, the functions IN) introduced in the previous section should 
be understood in the sense 

From (32) and (33) we already know that 

(39) 

and what E N k l  equals is the subject to be solved now. For this purpose, let us calculate 
the following matrix element: 

( N -  118, b,k]lN) = 2 Eu'k'[(N - llb;,k'bv'k'b,kIN) 
u ' k '  

- ( N  - l/bukb:'k'bu'k' IN)]. (41) 
In the MFA the matrix elements in (4) can be split off properly and t k  s:mbols d v v ' d k k '  

will appear to get rid of the sums. This procedure results in 

( N -  l I [ f i ,  b u k ] l N )  - GEuk(N-  IIbuklN) (42) 

G =  ( N -  ll[b:k;k,buk]lN- 1) .  (43) 

It can be judged that G is in fact independent of v and k .  Then we can use (14) and (25) 
to bring it into the form 

c = 1 - (2/%!)(N - 1I&lN - 1)  = 1 - 2(N - l ) / R  (44) 
Substituting (44) into (42) we get approximately 

[fi, b u k l  = - & u k b u k  

&,k = Euk[ l  - 2 ( N -  1)/%]. 

Similarly, we also have 

[ H ,  b:kfkl = &ukb:k*  

Using (45) and (47) it is easy to prove (Nguyen 1984) that 

(45) 

(46) 

(47) 

The relations (48) and (49) state that the action of b uk (b:k) on a State 1 N )  takes from 
(adds to) it an exciton and at the same time decreases (increases) its total energy EN by 
an amount of &,k. Therefore, we can interpret &,k as the energy of an exciton which as 
seen from (46) depends on the total number N of excitons of the system. As to 
bvk (b:k) it serves as the annihilation (creation) operator of an exciton with energy &,k. 
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Owing to the above-stated N-dependence we may, when needed, write the index N as 

Now it is timely to note that E ~ ~ ~ I ~ = ~  = EYk and & u k N I N , l  < Euk.  These mean the 
existence of an attractive potential among excitons which is due simply to their non- 
boson character. So, such a potential is reasonably called purely kinematic and cannot 
be described by the boson formalism. Because of the purely kinematic interaction 
between excitons that is always present in the system with N > 1 an exciton gas is never 
ideal even when all the dynamic interactions are switched off. 

b u k  (bzk) and Eukas b u k N  (bh”) and &ukN. 

5. Density-dependent exciton distribution function 

After having understood the physical meaning of the operators buk and bzk in the MFA 
sense we can define the exciton distribution function nukN as usual: 

n U m  ( b h ~ b ~ k ~ )  E ( N -  1 lb :k~b~k~IN-  1) 

E Sp{exp[(l/kB T)(hfi-fi)l b:kNbukN)/SP{eXP[(l/kB T)(pfi- fi)]> (50)  

where p is the chemical potential, 8 and fi being determined by (14) and (9), respect- 
ively. As the MFA applied to an N-particle system treats particles as independent in the 
sense that each of them moves in the averaged field produced by the N - 1 particles, the 
averaging must be carried out over the state IN - 1) rather than IN). This will lead to 
the physically correct vanishing density limit of the distribution function (see later). 
Making use of (37) and the invariance of Sp{. . . }  in regard to operator cyclic per- 
mutations we can write 

Sp{exp[(l/kB T)(hfi-@)l b : k N b v k N )  = Sp{exp[(l/kB T)(pfi-fi)I b u k N B v k N )  (51) 

where 

BukN = exp[(l/kB T)(p$-fii)l b z k N  exp[-(l/kB T)(pfi-fi)]* (52) 

At this moment, resorting to (17) and (47) we can put BvkN in the form 

B u k N  = exp[(l/kB - & u k N ) I  b:kN* (53) 

Substituting (53) into (51), then (51) into (50) and applyingequations (50) from the right 
to the left with account of (following from (14) and (15)) 

(bb+)  = 1 + (b+b)  - (2 /9?) ( f i  (54) 

we get an equation for n , k N ,  whose solution reads 

nvkN = [1 - 2(N- l)/zn]/(exp~(l/kB T){Euk[l - 2(N- l>/Rn])i - l>* (55 )  

Obviously, the exciton distribution function (55) is dependent on the exciton number N 
and the rank order % of the parafermion-like statistics which they obey. Furthermore, in 
the low-density limit (N  + l ) ,  ( 5 5 )  reproduces the well known Bose-Einstein function. 
Note also that the function derived by Kaplan and Ruvinskii (1976) did not reflect such 
a physically meaningful limit. 
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6. Conclusions 

In conclusion, we prefer to discuss problems which still have to be dealt with rather than 
to summarise what has been done in this paper. A few of these remaining problems are 
as follows. 

(i) The dynamic and dynamic-kinematic interactions must be added to 8 on the 
same footing as in deriving 8. Only in such a way will the relative contributions of the 
three kinds of interaction be accounted for reliably. It is expected that the purely 
kinematic interaction would give non-negligible contributions in special high-excitation 
phenomena. For an illustrative estimate let us take CdS with the parameters E = 
Elsk=O = 2.5528 eV, I = I% = 32.9 meV, r = rls (exciton Bohr radius) = 25.5 A and 
unit-cell size a = 5.82 A. The energy corrections scaled in the exciton density due to the 
purely kinematic and dynamic interactions then will be /AEki,I = 2EV/91 = 2Ea3 = 
1.0 X eVcm3 (see, e.g., Hanamura 
1974). We see that lAEkinl is about 7% of /AEdynI, indicating the necessity of taking the 
former into account together with the latter. 

(ii) The spin effect, the band structures, more adequate approximations, etc, should 
be considered if needed to explain concrete experimental findings. 

(iii) Since the parafermions can be bosonised exactly without the loss of any of their 
properties (Kalnay 1975), the parafermion-like behaviour of the excitons suggests that 
we should bosonise the excitons in a way other than the existing methods. If it were 
successful, all kinds of interaction including the purely kinematic one could be described 
at the same time as considering excitons as ideal bosons. 

eVcm3 and /AEdyn /  = 26 nIr3 /3  = 1.5 X 
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Appendix 

From (4) and (5) it follows that, respectively, 

x IfY(P>12 = v 
P 

U 

Summing both sides of (Al) over v ,  and then using (A2), one has 

which gives the second equality of (15). 
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